Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

Презентация на тему «Полупроводниковые диоды. Презентация на тему диод Диоды в современной электроники презентация

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Диод- электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь.

3 слайд

Описание слайда:

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону - основное свойство диода. Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы- пассивными).

4 слайд

Описание слайда:

Односторонняя проводимость диода является его основным свойством. Это свойство и определяет назначение диода: – преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование); – выпрямление переменного тока в постоянный Свойства диода

5 слайд

Описание слайда:

Классификация диодов По исходному полупроводниковому материалу диоды делят на четыре группы: германиевые, кремниевые, из арсенида галлия и фосфида индия. Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые. Это связано с их большей проводимостью при небольшом напряжении (около 0,1…0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5…30 кОм). Полупроводниковые диоды

6 слайд

Описание слайда:

По конструктивно-технологическому признаку различают диоды точечные и плоскостные. По назначению полупроводниковые диоды делят на следующие основные группы: выпрямительные, универсальные, импульсные, варикапы, стабилитроны (опорные диоды), стабисторы, туннельные диоды, обращенные диоды, лавинно-пролетные (ЛПД), тиристоры, фотодиоды, светодиоды и оптроны.

7 слайд

Описание слайда:

Диоды характеризуются такими основными электрическими параметрами: – током, проходящим через диод в прямом направлении (прямой ток Іпр); – током, проходящим через диод в обратном направлении (обратный ток Іобр); – наибольшим допустимым выпрямленным ТОКОМ выпр. макс; – наибольшим допустимым прямым током І пр.доп.; – прямым напряжением U n p; – обратным напряжением и об Р; – наибольшим допустимым обратным напряжением и обр.макс – емкостью Сд между выводами диода; – габаритами и диапазоном рабочих температур

8 слайд

Описание слайда:

При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску. Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора - диод пропускает ток только в одну сторону Работа диода

9 слайд

Описание слайда:

Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный - с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, - прямым током Iпр, а поданное на него напряжение, из-за которого диод оказался в открытым, - прямым напряжением Uпр. Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током Iобр, а напряжение, создающее его,- обратным напряжением Uобр.

10 слайд

Описание слайда:

Маркировка диодов На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, и дату изготовления, а также его условное обозначение. Условное обозначение диода (анод и катод) указывает, как нужно подключать диод на платах устройств. Диод имеет два вывода, один из которых катод (минус), а другой - анод (плюс). Условное графическое изображение на корпусе диода наносится в виде стрелки, указывающей прямое направление, если стрелки нет, то ставится знак «+». На плоских выводах некоторых диодов (например, серии Д2) прямо вьіштамповано условное обозначение диода и его тип. При нанесении цветового кода, цветную метку, точку или полоску наносят ближе к аноду (рис. 2.1). Для некоторых типов диодов используется цветная маркировка в виде точек и полосок (табл. 2.1). Диоды старых типов, в частности точечные, выпускались в стеклянном оформлении и маркировались буквой «Д» с добавлением цифры и буквы, обозначающих подтип прибора. Германиево-индиевые плоскостные диоды имели обозначение «Д7».

11 слайд

Описание слайда:

Система обозначений Система обозначений состоит из четырех элементов. Первый элемент (буква или цифра) указывает исходный полупроводниковый материал, из которого изготовлен диод: Г или 1 - германий* К или 2 - кремний, А или 3 - арсенид галлия, И или 4 - фосфид индия. Второй элемент - буква, показывающая класс или группу диода. Третий элемент - число, определяющее назначение или электрические свойства диода. Четвертый элемент указывает порядковый номер технологической разработки диода и обозначается от А до Я. Например, диод КД202А расшифровывается: К - материал, кремний, Д - диод выпрямительный, 202 - назначение и номер разработки, А - разновидность; 2С920 - кремниевый стабилитрон большой мощности разновидности типа А; АИЗ01Б - фосфид-индиевый туннельный диод переключающей разновидности типа Б. Иногда встречаются диоды, обозначенные по устаревшим системам: ДГ-Ц21, Д7А, Д226Б, Д18. Диоды Д7 отличаются от диодов ДГ-Ц цельнометаллической конструкцией корпуса, вследствие чего они надежнее работают во влажной атмосфере. Германиевые диоды типа ДГ-Ц21…ДГ-Ц27 и близкие к ним по характеристикам диоды Д7А…Д7Ж обычно используют в выпрямителях для питания радиоаппаратуры от сети переменного тока. В условное обозначение диода не всегда входят некоторые технические данные, поэтому их необходимо искать в справочниках по полупроводниковым приборам. Одним из исключений является обозначение для некоторых диодов с буквами КС или цифрой вместо К (например, 2С) - кремниевые стабилитроны и стабисторы. После этих обозначений стоит три цифры, если это первые цифры: 1 или 4, то взяв последние две цифры и разделив их на 10 получим напряжение стабилизации Uст. Например, КС107А - стабистор, Uст = 0,7 В, 2С133А - стабилитрон, Uст = 3,3 В. Если первая цифра 2 или 5, то последние две цифры показывают Uст, например, КС 213Б - Uст = 13 В, 2С 291А - 0Uст = 91 В, если цифра 6, то к последним двум цифрам нужно прибавить 100 В, например, КС 680А – Uст = 180 В.

12 слайд

Описание слайда:

Структурная схема полупроводникового диода с р - n-переходом: 1 - кристалл; 2 - выводы (токоподводы); 3 - электроды (омические контакты); 4 - плоскость р - n-перехода. Типичная вольтамперная характеристика полупроводникового диода с р - n-переходом: U - напряжение на диоде; I - ток через диод; U*oбр и I*oбр - максимальное допустимое обратное напряжение и соответствующий обратный ток; Ucт - напряжение стабилизации.

13 слайд

Описание слайда:

Малосигнальная (для низких уровней сигнала) эквивалентная схема полупроводникового диода с р - n-переходом: rp-n - нелинейное сопротивление р - n-перехода; rб - сопротивление объёма полупроводника (базы диода); ryт - сопротивление поверхностных утечек; СБ - барьерная ёмкость р - n-перехода; Сдиф - диффузионная ёмкость, обусловленная накоплением подвижных зарядов в базе при прямом напряжении; Ск - ёмкость корпуса; Lк - индуктивность токоподводов; А и Б - выводы. Сплошной линией показано подключение элементов, относящихся к собственно р - n-переходу. Вольтамперные характеристики туннельного (1) и обращенного (2) диодов: U - напряжение на диоде; I - ток через диод

14 слайд

Описание слайда:

Полупроводниковые диоды (внешний вид): 1 - выпрямительный диод; 2 - фотодиод; 3 - СВЧ диод; 4 и 5 - диодные матрицы; 6 - импульсный диод. Корпуса диодов: 1 и 2 - металло-стеклянные; 3 и 4 - металло-керамические; 5 - пластмассовый; 6 - стеклянный

15 слайд

Описание слайда:

Диод Шоттки Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами. Стабилитрон /диод Зенера/ Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений. Варикап Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

16 слайд

Описание слайда:

Тиристор Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое. Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках

Описание слайда:

Инфракрасный диод Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне. Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды. Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка. Фотодиод Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Слайд 2

Область применения

Основным свойством диода является то, что он хорошо пропускает ток в одну сторону, но почти не пропускает ток в другую сторону. С помощью нескольких диодов можно преобразовать переменный ток в постоянный, на котором работают большинство компактных электронных устройств

Слайд 3

Устройство диода

Диод представляет собой пластинку германия (c проводимостью p-типа) и индия (n – типа)

Слайд 5

Принцип работы

Таким образом, если к аноду (+) приложить положительное напряжение, а к катоду (-) ток будет легко проходить. Такое подключение называется положительным включением диода. При обратном включении диода (т.е. если к аноду (-), а к катоду (+) ток проходить не будет.

Слайд 7

Плоскостной диод Нетрудно видеть, что у такого диода площадь p-n перехода намного больше, чем у точечного. У мощных диодов эта площадь может достигать до 100 и более квадратных миллиметров, поэтому их прямой ток намного больше, чем у точечных. Именно плоскостные диоды используются в выпрямителях, работающих на низких частотах, как правило, не свыше нескольких десятков килогерц.

Разделы: Физика , Конкурс «Презентация к уроку»

Презентация к уроку






























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок в 10-м классе.

Тема: р- и n - типов. Полупроводниковый диод. Транзисторы».

Цели:

  • образовательные : сформировать представление о свободных носителях электрического заряда в полупроводниках при наличии примесей с точки зрения электронной теории и опираясь на эти знания выяснить физическую сущность p-n-перехода; научить учащихся объяснять работу полупроводниковых приборов, опираясь на знания о физической сущности p-n-перехода;
  • развивающие : развивать физическое мышление учащихся, умение самостоятельно формулировать выводы, расширять познавательный интерес, по­знавательную активность;
  • воспитательные : продолжить формирование научного мировоззрения школьников.

Оборудование: презентация по теме: «Полупроводники. Электрический ток через контакт полупроводников р- и n - типов. Полупроводниковый диод. Транзистор», мультимедийный проектор.

Ход урока

I. Организационный момент.

II. Изучение нового материала.

Слайд 1.

Слайд 2. Полупроводник – вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит, что электрическая проводимость (1/R) увеличивается.

Наблюдается у кремния, германия, селена и у некоторых соединений.

Слайд 3.

Механизм проводимости у полупроводников

Слайд 4.

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние Слайд 5. электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и они ведут себя как диэлектрики.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

Слайд 6. 1) электронная (проводимость "n " – типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны – сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля.

Электронная проводимость полупроводников обусловлена наличием свободных электронов.

Слайд 7.

2) дырочная (проводимость " p" – типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном – "дырка".

Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.

Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей. Поэтому полупроводники обладают ещё и дырочной проводимостью.

Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У таких полупроводников существует собственная + примесная проводимость.

Наличие примесей проводимость сильно увеличивает.

При изменении концентрации примесей изменяется число носителей электрического тока – электронов и дырок.

Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

Слайд 8. 1) донорные примеси (отдающие) – являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.

Слайд 9. Это проводники " n " – типа , т.е. полупроводники с донорными примесями, где основной носитель заряда – электроны, а неосновной – дырки.

Такой полупроводник обладает электронной примесной проводимостью. Например – мышьяк.

Слайд 10. 2) акцепторные примеси (принимающие) – создают "дырки" , забирая в себя электроны.

Это полупроводники " p "- типа , т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной – электроны.

Такой полупроводник обладает дырочной примесной проводимостью . Слайд 11. Например – индий. Слайд 12.

Рассмотрим, какие физические процессы происходят при контакте двух полупроводников с различным типом проводимости, или, как говорят, в р-n-переходе.

Слайд 13-16.

Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) – область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.

При прямом (пропускном) направлении внешнего электрического поля электрический ток проходит через границу двух полупроводников.

Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.

Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода :

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковые диоды

Полупроводник с одним "p-n" переходом называется полупроводниковым диодом.

– Ребята, запишите новую тему: «Полупроводниковый диод».
– Какой там ещё идиот?», – с улыбкой переспросил Васечкин.
– Не идиот, а диод! – ответил учитель, – Диод, значит имеющий два электрода, анод и катод. Вам ясно?
– А у Достоевского есть такое произведение – «Идиот», – настаивал Васечкин.
– Да, есть, ну и что? Вы на уроке физики, а не литературы! Прошу больше не путать диод с идиотом!

Слайд 17–21.

При наложении эл.поля в одном направлении сопротивление полупроводника велико, в обратном – сопротивление мало.

Полупроводниковые диоды основные элементы выпрямителей переменного тока.

Слайд 22–25.

Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Полупроводниковые транзисторы – также используются свойства" р-n "переходов, - транзисторы используются в схемотехнике радиоэлектронных приборов.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как – то отличить их от вторых, часто называют обычными транзисторами. Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем. Термин «транзистор» образован из двух английских слов: transfer – преобразователь и resistor – сопротивление. В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р – n перехода. Две крайние области обладают электропроводностью одного типа, средняя – электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p – n – р. У транзистора структуры n – p – n, наоборот, по краям расположены области с электронной электропроводностью, а между ними – область с дырочной электропроводностью (рис. 1, б).

При подаче на базу транзистора типа n-p-n положительного напряжения он открывается, т. е. сопротивление между эмиттером и коллектором уменьшается, а при подаче отрицательного, наоборот – закрывается и чем сильнее сила тока, тем сильнее он открывается или закрывается. Для транзисторов структуры p-n-p все наоборот.

Основой биполярного транзистора (рис. 1) служит небольшая пластинка германия или кремния, обладающая электронной или дырочной электропроводимостью, то есть n-типа или p-типа. На поверхности обеих сторон пластинки наплавляют шарики примесных элементов. При нагревании до строго определенной температуры происходи диффузия (проникновение) примесных элементов в толщу пластинки полупроводника. В результате в толще пластинки возникают две области, противоположные ей по электропроводимости. Пластинка германия или кремния p-типа и созданные в ней области n-типа образуют транзистор структуры n-p-n (рис. 1,а), а пластинка n-типа и созданные в ней области p-типа - транзистор структуры p-n-p (рис. 1,б).

Независимо от структуры транзистора его пластинку исходного полупроводника называют базой (Б), противоположную ей по электропроводимости область меньшего объема - эмиттером (Э), а другую такую же область большего объема - коллектором (К). Эти три электрода образуют два p-n перехода: между базой и коллектором - коллекторный, а между базой и эмиттером - эмиттерный. Каждый из них по своим электрическим свойствам аналогичен p-n переходам полупроводниковых диодов и открывается при таких же прямых напряжениях на них.

Условные графические обозначения транзисторов разных структур отличаются лишь тем, что стрелка, символизирующая эмиттер и направление тока через эмиттерный переход, у транзистора структуры p-n-p обращена к базе, а у транзистора n-p-n - от базы.

Слайд 26–29.

III. Первичное закрепление.

  1. Какие вещества называются полупроводниками?
  2. Какую проводимость называют электронной?
  3. Какая проводимость наблюдается ещё у полупроводников?
  4. О каких примесях теперь вам известно?
  5. В чем заключается пропускной режим p-n- перехода.
  6. В чем заключается запирающий режим p-n- перехода.
  7. Какие полупроводниковые приборы вам известны?
  8. Где и для чего используют полупроводниковые приборы?

IV. Закрепление изученного

  1. Как меняется удельное сопротивление полупроводников: при нагревании? При освещении?
  2. Будет ли кремний сверхпроводящим, если его охладить до температуры, близкой к абсолютному нулю? (нет, с понижением температуры сопротивление кремния увеличивается).


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
РАЗДЕЛ 1. Полупроводниковые приборы Тема: Полупроводниковые диодыАвтор: Баженова Лариса Михайловна, преподаватель ГБПОУ Иркутской области «Ангарский политехнический техникум», 2014 г. Содержание1. Устройство, классификация и основные параметры полупроводниковых диодов1.1. Классификация и условные обозначения полупроводниковых диодов1.2. Конструкция полупроводниковых диодов1.3. Вольтамперная характеристика и основные параметры полупроводниковых диодов2. Выпрямительные диоды2.1. Общая характеристика выпрямительных диодов2.2. Включение выпрямительных диодов в схемах выпрямителей 1.1. Классификация диодовПолупроводниковым диодом называется полупроводниковый прибор с одним p-n переходом и двумя внешними выводами. 1.1. Маркировка диодовМатериал полупроводникаТип диодаГруппа по параметрамМодификация в группеКС156АГД507БАД487ВГ (1) – германий; К (2) – кремний; А (3) – арсенид галлия.Д – выпрямительные, ВЧ иимпульсные диоды;А – диоды СВЧ;C – стабилитроны;В – варикапы;И – туннельные диоды;Ф – фотодиоды;Л – светодиоды;Ц – выпрямительные столбы и блоки.по группам:Первая цифра для «Д»:1 – Iпр < 0,3 A2 – Iпр = 0,3 A…10A3 – Iпр > 0,3 A 1.1. Условное графическое изображение диодов (УГО)а) Выпрямительные, высокочастотные, СВЧ, импульсные; б) стабилитроны; в) варикапы; г) туннельные диоды; д) диоды Шоттки; е) светодиоды; ж) фотодиоды; з) выпрямительные блоки 1.2. Конструкция полупроводниковых диодовНа базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °С) происходит диффузия акцепторной примеси в базу диода, в результате чего образуется область p-типа проводимости и p-n переход большой плоскостиВывод от p-области называется анодом, а вывод от n-области – катодом 1) Плоскостной диодКристалл полупроводникаМеталлическая пластинкаОсновой плоскостных и точечных диодов является кристалл полупроводника n-типа проводимости, который называется базой 1.2. Конструкция полупроводниковых диодов 2) Точечный диодК базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцепторной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы акцепторной примеси переходят в базу, образуя p-область Получается p-n переход очень малой площади. За счёт этого точечные диоды будут высокочастотными, но могут работать лишь на малых прямых токах (десятки миллиампер).Микросплавные диоды получают путём сплавления микрокристаллов полупроводников p- и n- типа проводимости. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам – точечные. 1.3. Вольтамперная характеристика и основные параметры полупроводниковых диодовВольтамперная характеристика реального диода проходит ниже, чем у идеального p-n перехода: сказывается влияние сопротивления базы. 1.3. Основные параметры диодов Максимально допустимый прямой ток Iпр.max. Прямое падение напряжения на диоде при макс. прямом токе Uпр.max. Максимально допустимое обратное напряжение Uобр.max = ⅔ ∙ Uэл.проб. Обратный ток при макс. допустимом обратном напряжении Iобр.max. Прямое и обратное статическое сопротивление диода при заданных прямом и обратном напряжениях Rст.пр.=Uпр./ Iпр.; Rст.обр.=Uобр./ Iобр. Прямое и обратное динамическое сопротивление диода. Rд.пр.=∆ Uпр./ ∆ Iпр 2. Выпрямительные диоды2.1. Общая характеристика. Выпрямительным диодом называется полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный в силовых цепях, то есть в источниках питания. Выпрямительные диоды всегда плоскостные, они могут быть германиевые диоды или кремниевые. Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов. Добавочные сопротивления Rд (1-50 Ом) для выравнивания токов в ветвях).Если напряжение в цепи превосходит максимально допустимое Uобр. диода, то в этом случае допускается последова-тельное включение диодов. 2.2. Включение выпрямительных диодов в схемах выпрямителей 1) Однополупериодный выпрямительЕсли взять один диод, то ток в нагрузке будет протекать за одну половину периода, поэтому такой выпрямитель называется однополупериодным. Его недостаток – малый КПД. 2) Двухполупериодный выпрямитель Мостовая схема 3) Двухполупериодный выпрямитель с выводом средней точки вторичной обмотки трансформатора Если понижающий трансформатор имеет среднюю точку (вывод отсередины вторичной обмотки), то двухполупериодный выпрямитель может быть выполнен на двух диодах, включенных параллельно. Недостатками этого выпрямителя являются: Необходимость применения трансформатора со средней точкой; Повышенные требования к диодам по обратному напряжению.. Задание: Определить, сколько одиночных диодов в схеме и сколько диодных мостов. Задания1. Расшифруйте названия полупроводниковых приборов:1 вариант: 2С733А, КВ102А, АЛ306Д2 вариант: КС405А, 3Л102А, ГД107Б З вариант: КУ202Г, КД202К, КС211Б 4 вариант: 2Д504А, КВ107Г, 1А304Б5 вариант: АЛ102А; 2В117А; КВ123А2. Показать путь тока на схеме:1,3,5 вар.: На верхнем зажиме«плюс» источника.2,4 вар.: На верхнем зажиме «минус» источника.


Приложенные файлы

















1 из 16

Презентация на тему: Диод

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Туннельный диод. Первая работа, подтверждающая реальность создания туннельных приборов была посвящена туннельному диоду, называемому также диодом Есаки, и опубликована Л.Есаки в 1958 году. Есаки в процессе изучения внутренней полевой эмиссии в вырожденном германиевом p-n переходе обнаружил "аномальную" ВАХ: дифференциальное сопротивление на одном из участков характеристики было отрицательным. Этот эффект он объяснил с помощью концепции квантово-механического туннелирования и при этом получил приемлемое согласие между теоретическими и экспериментальными результатами.

№ слайда 4

Описание слайда:

Туннельный диод. Туннельным диодом называют полупроводниковый диод на основе p+-n+ перехода с сильнолегированными областями, на прямом участке вольт-амперной характеристики которого наблюдается n-образная зависимость тока от напряжения. Как известно, в полупроводниках с высокой концентрацией примесей образуются примесные энергетические зоны. В n-полупроводниках такая зона перекрывается с зоной проводимости, а в p-полупроводниках – с валентной зоной. Вследствие этого уровень Ферми в n-полупроводниках с высокой концентрацией примесей лежит выше уровня Ec, а в р-полупроводниках ниже уровня Ev. В результате этого в пределах энергетического интервала DE=Ev-Ec любому энергетическому уровню в зоне проводимости n-полупроводника может соответствовать такой же энергетический уровень за потенциальным барьером, т.е. в валентной зоне p-полупроводника.

№ слайда 5

Описание слайда:

Туннельный диод. Таким образом, частицы в n и p-полупроводниках с энергетическими состояниями в пределах интервала DE разделены узким потенциальным барьером. В валентной зоне p-полупроводника и в зоне проводимости n-полупроводника часть энергетических состояний в интервале DE свободна. Следовательно, через такой узкий потенциальный барьер, по обе стороны которого имеются незанятые энергетические уровни, возможно туннельное движение частиц. При приближении к барьеру частицы испытывают отражение и возвращаются в большинстве случаев обратно, но все же есть вероятность обнаружения частицы за барьером, в результате туннельного перехода отлична от нуля и плотность туннельного тока j t0. Рассчитаем, чему равна геометрическая ширина вырожденного p-n перехода. Будем считать, что при этом сохраняется несимметричность p-n перехода (p+ – более сильнолегированная область). Тогда ширина p+-n+ перехода мала: Дебройлевскую длину волны электрона оценим из простых соотношений:

№ слайда 6

Описание слайда:

Туннельный диод. Геометрическая ширина p+-n+ перехода оказывается сравнима с дебройлевской длиной волны электрона. В этом случае в вырожденном p+-n+ переходе можно ожидать проявления квантово-механических эффектов, одним из которых является туннелирование через потенциальный барьер. При узком барьере вероятность туннельного просачивания через барьер отлична от нуля!!!

№ слайда 7

Описание слайда:

Туннельный диод. Токи в туннельном диоде. В состоянии равновесия суммарный ток через переход равен нулю. При подаче напряжения на переход электроны могут туннелировать из валентной зоны в зону проводимости или наоборот. Для протекания туннельного тока необходимо выполнение следующих условий: 1)энергетические состояния на той стороне перехода, откуда туннелируют электроны, должны быть заполнены; 2) на другой стороне перехода энергетические состояния с той же энергией должны быть пустыми; 3)высота и ширина потенциального барьера должны быть достаточно малыми, чтобы существовала конечная вероятность туннелирования; 4) должен сохраняться квазиимпульс. Туннельный диод.swf

№ слайда 8

Описание слайда:

Туннельный диод. В качестве параметров используются напряжения и токи, характеризующие особые точки ВАХ. Пиковый ток соответствует максимуму ВАХ в области туннельнго эффекта. Напряжение Uп соответствует току Iп. Ток впадины Iв и Uв характеризуют ВАХ в области минимума тока. Напряжение раствора Upp соответствует значению тока Iп на диффузионной ветви характеристики. Падающий участок зависимости I=f(U) характеризуется отрицательным дифференциальным сопротивлением rД= -dU/dI, величину которого с некоторой погрешностью можно определить по формуле

№ слайда 9

Описание слайда:

Обращенные диоды. Рассмотрим случай, когда энергия Ферми в электронном и дырочном полупроводниках совпадает или находится на расстоянии ± kT/q от дна зоны проводимости или вершины валентной зоны. В этом случае вольт-амперные характеристики такого диода при обратном смещении будут точно такие же, как и у туннельного диода, то есть при росте обратного напряжения будет быстрый рост обратного тока. Что касается тока при прямом смещении, то туннельная компонента ВАХ будет полностью отсутствовать в связи с тем, что нет полностью заполненных состояний в зоне проводимости. Поэтому при прямом смещении в таких диодах до напряжений, больше или равных половине ширины запрещенной зоны, ток будет отсутствовать. С точки зрения выпрямительного диода вольт-амперная характеристика такого диода будет инверсной, то есть будет высокая проводимость при обратном смещении и малая при прямом. В связи с этим такого вида туннельные диоды получили название обращенных диодов. Таким образом, обращенный диод – это туннельный диод без участка с отрицательным дифференциальным сопротивлением. Высокая нелинейность вольт-амперной характеристики при малых напряжениях вблизи нуля (порядка микровольт) позволяет использовать этот диод для детектирования слабых сигналов в СВЧ-диапазоне.

№ слайда 10

Описание слайда:

Переходные процессы. При быстрых изменениях напряжения на полупроводниковом диоде на основе обычного p-n перехода значение тока через диод, соответствующее статической вольт-амперной характеристике, устанавливается не сразу. Процесс установления тока при таких переключениях обычно называют переходным процессом. Переходные процессы в полупроводниковых диодах связаны с накоплением неосновных носителей в базе диода при его прямом включении и их рассасывании в базе при быстром изменении полярности напряжения на диоде. Так как электрическое поле в базе обычного диода отсутствует, то движение неосновных носителей в базе определяется законами диффузии и происходит относительно медленно. В результате кинетика накопления носителей в базе и их рассасывание влияют на динамические свойства диодов в режиме переключения. Рассмотрим изменения тока I при переключении диода с прямого напряжения U на обратное напряжение.

№ слайда 11

Описание слайда:

Переходные процессы. В стационарном случае величина тока в диоде описывается уравнением После завершения переходных процессов величина тока в диоде будет равна J0. Рассмотрим кинетику переходного процесса, то есть изменение тока p-n перехода при переключении с прямого напряжения на обратное. При прямом смещении диода на основе несимметричного p-n перехода происходит инжекция неравновесных дырок в базу диода. Изменение во времени и пространстве неравновесных инжектированных дырок в базе описывается. уравнением непрерывности:

№ слайда 12

Описание слайда:

Переходные процессы. В момент времени t = 0 распределение инжектированных носителей в базе определяется из диффузионного уравнения и имеет вид: Из общих положений ясно, что в момент переключения напряжения в диоде с прямого на обратное величина обратного тока будет существенно больше, чем тепловой ток диода. Это произойдет потому, что обратный ток диода обусловлен дрейфовой компонентой тока, а ее величина в свою очередь определяется концентрацией неосновных носителей. Эта концентрация значительно увеличена в базе диода за счет инжекции дырок из эмиттера и описывается в начальный момент этим же уравнением.

№ слайда 13

Описание слайда:

Переходные процессы. С течением времени концентрация неравновесных носителей будет убывать, следовательно, будет убывать и обратный ток. За время t2, называемое временем восстановления обратного сопротивления, или временем рассасывания, обратный ток придет к значению, равному тепловому току. Для описания кинетики этого процесса запишем граничные и начальные условия для уравнения непрерывности в следующем виде. В момент времени t = 0 справедливо уравнение распределения инжектированных носителей в базе. При установлении стационарного состояния в момент времени стационарное распределение неравновесных носителей в базе описывается соотношением:

№ слайда 14

Описание слайда:

Переходные процессы. Обратный ток обусловлен только диффузией дырок к границе области пространственного заряда p-n перехода: Процедура нахождения кинетики обратного тока следующая. Учитывая граничные условия, решается уравнение непрерывности и находится зависимость концентрации неравновесных носителей в базе p(x,t) от времени и координаты. На рисунке приведены координатные зависимости концентрации p(x,t) в различные моменты времени. Координатные зависимости концентрации p(x,t) в различные моменты времени

№ слайда 15

Описание слайда:

Переходные процессы. Подставляя динамическую концентрацию p(x,t), находим кинетическую зависимость обратного тока J(t). Зависимость обратного тока J(t) имеет следующий вид: Здесь – дополнительная функция распределения ошибок, равная Первое разложение дополнительной функции ошибок имеет вид: Разложим функцию в ряд в случаях малых и больших времен: t > p. Получаем: Из этого соотношения следует, что в момент t = 0 величина обратного тока будет бесконечно большой. Физическим ограничением для этого тока будет служить максимальный ток, который может протекать через омическое сопротивление базы диода rБ при обратном напряжении U. Величина этого тока, называемого током среза Jср, равна: Jср = U/rБ. Время, в течение которого обратный ток постоянен, называют временем среза.

№ слайда 16

Описание слайда:

Переходные процессы. Для импульсных диодов время среза τср и время восстановления τв обратного сопротивления диода являются важными параметрами. Для уменьшения их значения существуют несколько способов. Во-первых, можно уменьшать время жизни неравновесных носителей в базе диода за счет введения глубоких рекомбинационных центров в квазинейтральном объеме базы. Во-вторых, можно делать базу диода тонкой для того, чтобы неравновесные носители рекомбинировали на тыльной стороне базы.perpr_pn.swf Зависимость обратного тока от времени при переключении диода